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A FRACTIONAL DERIVATIVE RAILPAD MODEL
INCLUDED IN A RAILWAY TRACK MODEL
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When studying the dynamic behaviour of a railway track, the accurate modelling of the
behaviour of railpads is important. Here a fractional derivative railpad model is included
in a railway track model. The response of the track model to a force traversing the track
at a constant speed is calculated by use of a time integration method. Both a constant
traversing force and a force modelled as a stochastic process are studied. For comparison
an ordinary railpad model with a discrete elastic spring and a discrete viscous damper in
parallel is also used in the track model. The calculated displacements when using the two
different models are similar. A non-linear railpad model is also implemented, and is found
to result in a slightly different response.

7 1998 Academic Press Limited

1. INTRODUCTION

A modern railway track is built up of rails fastened onto concrete sleepers which rest on
the ballast. Railpads are inserted between the rails and the sleepers. The railpads protect
the sleepers from wear and provide electrical insulation. They also affect the dynamic
behaviour of the whole track since the stiffness and damping of the track are influenced
by the properties of the railpads.

An overview of railway track models has been given by Knothe and Grassie [1]. Both
frequency domain models and time domain models are in use. A benchmark test to
compare some of the models has been performed, see reference [2]. Time domain models
are often studied by use of modal analysis methods, as has been done by, e.g. Clark et al.
[3], Cai and Raymond [4] and Nielsen and Abrahamsson [5].

Grassie et al. [6] compared calculated results from different track models with
measurements. They showed that it is important to include the railpad to obtain an
accurate track model. Grassie and Cox [7] pointed out the importance of the railpads when
calculating the strain in the sleepers. Dalenbring [8] found that very soft pads will isolate
the sleepers from the rail. Full-scale experiments with a moving train were reported by
Fermér and Nielsen [9]. The influence of soft and stiff railpads on the wheel/rail contact
force, on the sleeper end acceleration, and on the railhead acceleration was measured.

Hitherto the railpads have often been modelled as a discrete spring and a discrete viscous
damper in parallel. Fenander [10] suggested a fractional derivative railpad model to better
take into account the frequency-dependent properties of the railpads. The fractional
derivative railpad model will here be included in a track model. The response to a load
traversing the track model at a constant speed will be calculated by use of a time
integration algorithm. One aim of the study is to compare results for the fractional
derivative railpad model to results when the ordinary spring and damper model is used.
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A non-linear railpad model will also be studied. Another aim is to indicate a way to
incorporate a fractional derivative model into a model of a complete structure.

2. FRACTIONAL DERIVATIVE MODEL

There are several different damping or viscoelasticity models in use. One common model
is the viscous model where the loss factor is proportional to frequency. At high frequencies
the loss factor then becomes very large, which is not realistic for many materials. The
hysteretic model, on the other hand, has a frequency-independent loss factor. This model,
however, leads to non-causal responses to transient loads [11]. A model which has been
found to work well over a large frequency range for many materials is the fractional
derivative model of viscoelasticity [12]. This linear model has a moderate loss factor at high
frequencies and results in causal responses to transient loads.

In its simplest uniaxial form the fractional derivative model includes only four
parameters, which are often enough to accurately describe a real material. The relationship
between a tensile force f(t) in the material and the corresponding elongation x(t) is then
written

f(t)+ lDaf(t)= k0x(t)+ kaDax(t), 0Q aQ 1. (1)

Here Da denotes the fractional derivative of order a, with respect to time t. The order a

of the two derivatives together with the factors l, k0 and ka are the four material parameters
which are to be determined to fit experimental data.

The fractional derivative of order a, for a between zero and one, of a function x(t) is
often defined as [13],

Dax(t)=
1

G(1− a)
d
dt g

t

0

x(t)
(t− t)a dt, 0Q aQ 1, (2)

where G is the gamma function. One property of the fractional derivative is that the Fourier
transform of the fractional derivative of a function which is zero for negative times t equals
(iv)a times the Fourier transform of the function itself. Denoting the Fourier transform
of x by x̂, the Fourier transform of the fractional derivative of x is written as

Dax(v)= (iv)ax̂(v). (3)

The principal root of (iv)a should be used, see reference [14]. The Fourier transform x̂(v)
of a function x(t) is here defined as

x̂=g
a

−a

x(t) e−ivt dt. (4)

For a viscoelastic spring which is modelled by use of fractional derivatives, the
complex-valued stiffness k*(v) in the frequency domain may be obtained by taking the
Fourier transform of equation (1), yielding

k*(v)=
f
 (v)
x̂(v)

=
k0 + ka (iv)a

1+ l(iv)a . (5)

The loss factor of the spring is then obtained as the ratio of the imaginary part of its
stiffness and the real part of the same stiffness.
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Some restrictions have to be placed on the parameters in order to obtain a thermo-
dynamically well-behaved model. Bagley and Torvik [15] state that these constraints are

k0 e 0, ka q 0, lq 0,
ka

l
e k0. (6)

If the parameter l is set to zero the loss factor will be large at high frequencies, as is the
case for the traditional viscous damper. There will be no damping if ka /l= k0.

Different methods to solve the differential equations which are obtained when the
fractional derivative model is used have been proposed. Padovan [16] and Enelund and
Olsson [17] presented time stepping algorithms. Bagley and Torvik [12] solved the
equations in the Laplace domain. A modal synthesis method was studied by Fenander [18].
Here a time stepping algorithm will be used.

3. RAILPAD MODELS

Three different railpad models have been studied. The parameters of the models have
been chosen to describe the studded rubber railpads presently used in Sweden. Laboratory
measurements on such railpads have been performed by Thompson and van Vliet [19].
Both laboratory measurements and measurements in a complete track have been reported
by Fenander [10].

The easiest way to model the stiffness and the damping of railpads is to use a constant
stiffness kv and a damping force which is proportional to deformation rate, with
proportionality constant cv . This traditional model is here called the viscous model. The
relationship between a force f(t) and the corresponding elongation x(t) for the viscous
model is written

f(t)= kvx(t)+ cvDx (t). (7)

For harmonic loading a constant complex-valued stiffness may be used in the frequency
domain to describe damping. This model, the hysteretic model, is not studied here because
it is non-causal in the time domain.

The equations for the spring element in Figure 1, when it is modelled by use of the
viscous model, can be written

0 kv

−kv

−kv

kv 1 0x1

x21+0 cv

−cv

−cv

cv 1 0Dx1

Dx21=0f1

f21 . (8)

Here x1 and x2 are the nodal displacements at the ends of the spring element, and f1 and
f2 are the corresponding nodal forces acting on the element.

As real railpads are non-linear, the values of the parameters in the viscous model will
depend on the static preload of the railpads. Here two sets of parameters, corresponding
to two levels of preload on one railpad, have been considered. The lower preload level,
20 kN, corresponds to a non-loaded track where only two fastening clips apply load to
one railpad. The higher preload level, 80 kN, may be found under a train wheel. The

Figure 1. Spring element with nodal displacements x1 and x2 and nodal forces f1 and f2.
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T 1

Viscous railpad model parameters for two different preloads Fp ,
fitted to dynamic laboratory measurements

Fp (kN) kv (MN/m) cv (kNs/m)

20 80 6·0
80 800 30

parameters in the viscous railpad model were determined to fit the measurement data given
by Thompson and van Vliet [19], and also by Fenander [10], for these preload levels.
Measurement data were given in the frequency range 50–1000 Hz, at frequencies 1 Hz
apart. The Rosenbrock optimization method, as described by Fenander [10], was used to
determine the parameters, given in Table 1.

To get a railpad model which better takes into account the frequency-dependence of the
stiffness and loss factor of the railpads, the fractional derivative model can be used. The
relationship between a force f(t) and the corresponding elongation x(t) will then be that
of equation (1). For the spring element in Figure 1 the equations become

0 k0

−k0

−k0

k0 1 0x1

x21+0 ka

−ka

−ka

ka 1 0Dax1

Dax21=0f1

f21+0 l
0

0
l 1 0Daf1

Daf21. (9)

Two different levels of preload have been studied for the fractional derivative model as
well. The fractional derivative model parameters determined by Fenander [10] for the
preloads 20 and 80 kN have been used. The parameters are listed in Table 2.

As real railpads are non-linear, a non-linear model has been implemented as well.
Thompson and van Vliet [19] measured the compression of a railpad as a function of static
loading up to 80 kN. The relationship between force and elongation has here been assumed
to be the same in tension as in compression. A third-degree polynomial has been fitted
to the static load-deflection curve obtained by Thompson and van Vliet and has been
assumed to be valid also for dynamic loading. The damping force has been taken to be
proportional to deformation rate. The relationship between a force f(t) and the
corresponding elongation x(t) in the non-linear model can then be written as

f(t)= k1x(t)+ k3x3(t)+ cnDx(t). (10)

The corresponding equations for the spring element in Figure 1 are

0 k1

−k1

−k1

k1 1 0x1

x21+0k3

0
0
k31 0(x1 − x2)3

(x2 − x1)31+0 cn

−cn

−cn

cn 1 0Dx1

Dx21=0f1

f21 . (11)

T 2

Fractional derivative railpad model parameters for two different preloads
Fp , fitted to dynamic laboratory measurements

Fp (kN) a k0(MN/m) ka (MNsa/m) l(sa)

20 0·49 54 0·61 0·69×10−9

80 0·23 480 57 6·4 ×10−3
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T 3

Non-linear railpad model parameters fitted to laboratory
measurements

k1(MN/m) k3(TN/m3) cn (kNs/m)

12 3·5 6·0

The parameters obtained for the non-linear model are given in Table 3. Since the damping
cannot be determined from static measurements, the damping constant cn has been chosen
to be equal to the damping constant in the viscous model for the preload 20 kN.

4. TRACK MODEL

Assuming that the track and the load from the train are symmetric, only half of the track
need be included in a model. In the examples a rather simple track model has been used,
since the aim was to study the influence of the railpad models on the response of the track.
The length of the track model is eight sleeper bays, as shown in Figure 2. The rail is
modelled by use of standard Euler–Bernoulli beam elements with consistent mass matrices,
see, e.g., reference [20]. In each sleeper bay the rail is divided into four equal beam
elements, with bending stiffness EI=6·11 MNm2 and mass per unit length mr =60·34 kg/
m. These data correspond to the rail type UIC60. The sleepers are situated at a distance
L=0·70 m apart and are modelled as discrete masses ms =125 kg, which is half the mass
of the concrete sleeper used in Sweden. Each sleeper mass is connected to the rail via one
of the three railpad models described. The ballast under each sleeper is modelled as a
damped spring by use of the viscous model in equation (7) with stiffness kb =20 MN/m
and damping constant cb =20 kNs/m. The load on the track model is a force P traversing
the track at a constant speed v.

The equations of motion for the different elements of the model are assembled into a
system of structural equations for the whole track. The internal nodal forces are then
eliminated. In the case of the viscous railpad model the system of equations is

MD2d+CDd+Kd=F, (12)

where M is the mass matrix, C is the damping matrix, K is the stiffness matrix, and d is
the vector of nodal displacements. The vector F contains the applied load. The mass matrix
has contributions from the beam element mass matrices and it also contains the sleeper
masses. The stiffness matrix has contributions from all parts of the track, while the
damping matrix only has contributions from the ballast springs and from the viscous
railpad model.

Figure 2. Track model traversed by force P at constant speed v.
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In the cases with the fractional derivative railpad model and the non-linear railpad
model, equation (12) has to be modified. For the fractional derivative railpad model, the
internal nodal forces have been eliminated, but the fractional derivatives of the forces
through the railpads have been accounted for as internal loads on the right-hand side of
the structural equation. In this manner the order of the equations is not raised, as would
have been the case, if the fractional derivatives of the internal nodal forces had been
eliminated by applying a fractional order derivative to Newton’s second law, see, e.g.
reference [21]. The fractional derivatives of the displacements of the railpads turn up on
the left-hand side,

MD2d+CDd+KaDad+Kd=F+L Daf. (13)

Here the matrix Ka contains the element matrices with the fractional derivative railpad
model parameters ka from equation (9). In the matrix L the parameters l from equation
(9) appear on the diagonal at places corresponding to the nodes of the railpad elements.
Further, Daf are the fractional derivatives of the force through the railpads. The damping
matrix C now has contributions only from the ballast damping, which appear in the
diagonal. In the stiffness matrix K the stiffness kv of the viscous railpad model has been
replaced by the stiffness factor k0 of the fractional derivative railpad model.

The initial conditions needed in equation (13) may be found by applying the Laplace
transform to the equation [13, 21]. It is then found that initial conditions are needed for
the displacement, d(0), and the velocity, Dd(0). Initial conditions for Da−1d(0) and Da−1f(0)
are also needed. The latter two are fractional integrals with lower and upper limits equal
to zero, and they vanish for any reasonable displacement or force.

For the non-linear model, the non-linear term has been included on the left-hand side
of equation (12),

MD2d+CDd+Kd+K3(Dd)3 =F. (14)

Here the matrix K3 consists of the spring element matrices containing the parameters k3

in equation (11). The vector (Dd)3 contains the corresponding railpad shortenings and
elongations, i.e., the differences between the nodal displacements at the ends of each
railpad, raised to the power three. As in the viscous case, the damping matrix C will contain
contributions from the railpads and the ballast.

5. ALGORITHM

To calculate the response of the track to the moving load, several different numerical
methods may be used. Here a Newmark method has been exploited [20]. The nodal
displacement di+1 in step i+1 is then obtained as

di+1 = di +Dt(Dd)i +
(Dt)2

2
(D2d)i , (15)

where the index i denotes time step i and Dt is the length of the time step. The nodal velocity
(Dd)i+1 in step i+1 is written as

(Dd)i+1 = (Dd)i +
Dt
2

((D2d)i +(D2d)i+1). (16)

To get expressions for the fractional derivatives in step i+1 an alternative definition
of the fractional derivative is used [13],

Dax(t)= lim
N:a

(t/N)−a

G(−a)
s

N−1

j=0

G( j− a)
G( j+1)

x0t− j
t
N1. (17)
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By omitting the limit procedure in the definition, an expression which is suitable for
numerical calculations of the fractional derivatives is obtained [13, 21]. The time step
Dt= t/N is introduced and the ratio of gamma functions is denoted by Ba ( j),

Ba ( j)=
G( j− a)

G(−a)G( j+1)
. (18)

An expression for the fractional derivative of the displacement, (Dad)i+1, in step i+1 is
then obtained as

(Dad)i+1 =
1

(Dt)a 0di+1 + s
i

j=1

Ba ( j)di+1− j1 . (19)

The values of the function Ba ( j) may be calculated recursively, due to the properties of
the gamma function,

Ba ( j)=
( j−1− a)

j
Ba ( j−1). (20)

For large times, i.e., when the step number i is large, the sums in equation (19) will contain
a large number of terms. However, the function Ba ( j) is small for large j and the sums
may be truncated. Here a maximum of 10,000 terms have been included in each sum.
Including more terms in the sums was found not to alter the response of the track.

When everything is known in step i, the new displacement di+1 in step i+1 may be
calculated from equation (15). Thereafter, the new fractional derivative of the
displacement, (Dad)i+1, may be obtained from equation (19). A similar expression can be
written for the fractional derivative of the force through the railpad, (Da f )i+1,

(Daf )i+1 =
1

(Dt)a 0fi+1 + s
i

j=1

Ba ( j)fi+1− j1 . (21)

As compared to equation (19) a problem here is that the force fi+1 through the railpad
at step i+1 is not yet known. It may be obtained with the aid of equation (9). Considering,
e.g., the force f1 in the spring element in Figure 1, equation (9) gives

f1,i+1 + l(Daf1)i+1 = k0x1,i+1 − k0x2,i+1 + ka (Dax1)i+1 − ka (Dax2)i+1. (22)

The displacement di+1, where the spring element nodal displacement x1, i+1 and x2,i+1 are
included, is already calculated, as is the fractional derivative of the displacement (Dad)i+1.
The fractional derivative of the force, (Daf )i+1, is taken from equation (21), and inserted
into equation (22). The updated value of the force fi+1 may then be solved for in equation
(22). The fractional derivative of the force, (Daf )i+1, is thereafter obtained from
equation (21).

An algorithm for the track calculations may now be set up as follows. First, the new
displacement is calculated from equation (15). In the case of the fractional derivative
railpad model, the new fractional derivative of the displacement is calculated from
equation (19). Thereafter the force through the railpad and its fractional derivative are
calculated from equations (22) and (21). For all railpad models, the applied load F is
calculated from the present value and the present location of the moving load and the
shape functions of the beam elements [20]. The velocity is taken from equation (16) and
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inserted, together with the displacements, the fractional derivatives (if present) and the
applied load, into the structural equation (12), (13) or (14), respectively, depending on the
railpad model. Then the updated acceleration is obtained from this equation. Eventually
the velocity is updated by equation (16).

Since the track is assumed to be at rest before the moving load enters, the initial
conditions are taken as homogeneous.

6. TRACK RESPONSE

The response of the track model in Figure 2 to a load traversing the track has been
calculated. In all calculations a time step Dt=10−7s has been used. Using a smaller time
step gave the same results as those reported. For the viscous railpad model a larger time
step could be used, but for the other railpad models a larger time step resulted in a small
change in the calculated response.

First the fractional derivative railpad model was investigated. The load was chosen to
be P=20 kN and it traversed the track at a speed v=70 km/h. In Figure 3 the vertical
deflection d of the rail under the moving load divided by the load P, is shown when the
two different sets of parameters in Table 2 are used. As expected the deflection is smaller
when the set of parameters corresponding to the higher preload is used, since the railpad
is stiffer for a higher preload. This can also be seen in Figure 4 where the compression
D of the fifth railpad in the track model, divided by the load P, is shown. If another value
of the load P had been used the results in Figures 3 and 4 would have been the same since
the model is linear. Also other velocities have been tried. Increasing the speed to, e.g.,
v=160 km/h gives only a small increase of the deflection of the rail, as is shown in
Figure 5.

The viscous model with the two sets of parameters in Table 1 has also been used. In
Figure 6 the vertical deflection d of the rail under the moving load, divided by the load
P, is shown. Comparing the deflections when the fractional derivative railpad model and
the viscous railpad model are used, it is seen that for the parameters corresponding to
the higher preload the deflections are very close. For the parameters corresponding to the

Figure 3. Calculated vertical deflection d of rail divided by load P as function of load position along track
in Figure 2. Fractional derivative railpad model is used. —————— , Railpad parameters determined for preload 20 kN;
– – –, railpad parameters determined for preload 80 kN. Load speed v=70 km/h. Time to traverse track model
is 0·288 s.
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Figure 4. Calculated compression D of fifth railpad divided by load P as function of load position along track
in Figure 2. Fractional derivative railpad model is used. —————— , Railpad parameters determined for preload 20 kN;
– – – railpad parameters determined for preload 80 kN. Load speed v=70 km/h. Time to traverse track model
is 0·288 s.

lower preload, the fractional derivative railpad model gives a larger deflection than the
viscous model.

The compression of the fifth railpad when the viscous model is used is shown in Figure 7.
For the parameter sets corresponding to the lower preload the compression of the viscous
railpad model is smaller than the compression of the fractional derivative railpad model.
For the parameter sets corresponding to the higher preload, on the other hand, the
compression of the viscous railpad model is larger than the compression of the fractional
derivative railpad model. Also in the case of the viscous model the influence of increasing
the load speed to v=160 km/h is very small.

Figure 5. Calculated vertical deflection d of rail divided by load P as function of load position along track
in Figure 2. Fractional derivative railpad model, railpad parameters determined for preload 20 kN. —————— , Load
speed v=70 km/h, time to traverse track model is 0·288 s; – – –, (almost coinciding) load speed v=160 km/h,
traversing time is 0·126 s.
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Figure 6. Calculated vertical deflection d of rail divided by load P as function of load position along track
in Figure 2. Viscous railpad model is used. —————— , Railpad parameters determined for preload 20 kN; – – –, railpad
parameters determined for preload 80 kN. Load speed is v=70 km/h, Time to traverse track model is 0·288 s.

Since the different sets of parameters of the linear railpad models give such different
results, a non-linear railpad model has also been implemented. The non-linear railpad
model with the set of parameters given in Table 3 has been used. The resulting deflection
of the rail, divided by the load P, is shown in Figure 8 when the load is P=20 kN and
P=80 kN, respectively. As seen, the higher load gives a smaller relative deflection than
the lower load, since the stiffness of the non-linear railpad model is higher at higher loads.
The non-linear railpad model gives a larger deflection than the linear railpad models. One
reason for this is that the parameters are not determined form the same measurement data.
The data for the linear railpad models have been obtained from dynamic measurements
with a static preload. The non-linear model, on the other hand, has a varying stiffness

Figure 7. Calculated compression D of fifth railpad divided by load P as function of load position along track
in Figure 2. Viscous railpad model is used. —————— , Railpad parameters determined for preload 20 kN; – – –, railpad
parameters determined for preload 80 kN. Load speed v=70 km/h. Time to traverse track model is 0·288 s.
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Figure 8. Calculated vertical deflection d of rail divided by load P as function of load position along track
in Figure 2. Non-linear railpad model is used. —————— , P=20 kN; – – –, P=80 kN. Load speed v=70 km/h. Time
to traverse track model is 0·288 s.

obtained from static measurements. The ratio between the stiffnesses in the static
measurement and in the dynamic measurements is about 2·9 at 50 Hz and 4·3 at 500 Hz,
independent of preload [19]. When the non-linear railpad model is used, it takes a longer
time until the deflection of the rail reaches its plateau value, as compared to when one
of the linear railpad models is used.

The compression of the fifth railpad divided by the load, when the non-linear railpad
model is used, is shown in Figure 9. As expected, the higher load gives a smaller relative
compression than the lower load. As for the linear railpad models, the influence of
increasing the speed is very small.

Figure 9. Calculated compression D of fifth railpad divided by load P as function of load position along track
in Figure 2. Non-linear railpad model is used. —————— , Load P=20 kN; – – –, P=80 kN. Load speed v=70 km/h.
Time to traverse track model is 0·2888 s.
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Figure 10. Calculated vertical deflection d of rail divided by load mean value P0 as function of load position
along track in Figure 2. (a) Viscous railpad model is used; (b) Fractional derivative railpad model is used. —————— .
Railpad parameters determined for preload 20 kN; – – – railpad parameters determined for preload 80 kN. Load
speed v=70 km/h. Time to traverse track model is 0·288 s.

To study the high frequency behaviour of the linear railpad models the train load has
also been modelled as a sample of a stochastic process. A suitable stochastic process can
be simulated by use of a cosine series [22],

P(t)=P0 +Pa s
N

i=1

cos (vit+8i ). (23)

The mean value of the process is P0. Further, N is the number of cosine terms and vi =2pfi

are the equally spaced angular frequencies. In the examples the equidistance of the
frequencies fi is 10 Hz in the range 50–1000 Hz, which is the range of the fit of the railpad
parameters. The mutually independent phase angles 8i are randomly and uniformly
distributed between 0 and 2p. The amplitude Pa is chosen to make the standard deviation
Pstd of the process equal to 10 per cent of the mean value, i.e., Pstd =PazN/2=0·10 P0.

The same sample of the process has been used as a load for the fractional derivative
railpad model and for the viscous railpad model. In Figure 10 the resulting deflection d

Figure 11. Calculated one-sided spectral density of vertical deflection d between sleepers 3 and 7 shown in
Figure 10. (a) Railpad parameters determined for preload 20 kN; (b) railpad parameters determined for preload
80 kN. —————— , Fractional derivative railpad model; – – –, viscous railpad model. Reference value is
S0 =10−22 m2s/N2.
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Figure 12. Calculated one-sided spectral density of compression D of fifth railpad. (a) Railpad parameters
determined for preload 20 kN; (b) railpad parameters determined for preload 80 kN. —————— , Fractional derivative
railpad model; – – –, viscous railpad model. Reference value is S0 =10−22 m2s/N2.

of the rail under the moving load, divided by the mean value of the load P0, is shown for
the different sets of parameters. The differences between the viscous railpad model and the
fractional derivative railpad model are the same as for the case with a constant load.

The spectral density of the deflection of the rail between sleeper numbers 3 and 7 has
been calculated and is shown in Figure 11. The spectral density of the whole compression
of the fifth railpad is shown in Figure 12. The results for the fractional derivative railpad
model are very close to the results for the viscous railpad model. The main difference
between the spectral density of the vertical deflection d and that of the compression D is
that the spectral density of the vertical deflection d has a peak at 70 Hz. This frequency
corresponds to an eigenmode of the track model where the rail and the sleeper masses move
in phase on the ballast, i.e., the railpads are deformed relatively little. This eigenfrequency
is the same for all the linear railpad models.

7. CONCLUDING REMARKS

A fractional derivative railpad model has been included in a railway track model. The
method to include a fractional derivative model in the track model may also be used for
other structures. The response of the track model to a load traversing the track at a
constant speed has been calculated.

For comparison a viscous railpad model has also been used. The parameters of these
two railpad models have been determined to fit the same measurement data. Two sets of
parameters for each railpad model have been used, corresponding to the preloads 20 and
80 kN, respectively. For the parameter sets corresponding to the lower preload, the viscous
railpad model was seen to give a smaller deflection of the rail and a smaller railpad
compression than the fractional derivative railpad model. For the parameter sets
corresponding to the higher preload, on the other hand, the viscous railpad model gave
a somewhat larger railpad compression than the fractional derivative railpad model, while
the deflections of the rail were similar. In the case of a random force the spectral densities
of the rail deflection and of the railpad compression were similar for the fractional
derivative railpad model and the viscous railpad model.

The differences between the results when using the viscous railpad model and the
fractional derivative railpad model were small. For other applications, however, the
difference between a fractional derivative model and a viscous model may be important.
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It should be noted that the calculation time is large when the fractional derivative railpad
model is used. In order to make calculations with the fractional derivative model more
efficient, some improvements in the time integration method have to be made, e.g., by
introducing a variable length of the time step.

As real railpads are non-linear, a non-linear railpad model was studied as well. The
non-linear railpad model gave a larger deflection than the linear railpad models. One
reason for this is that the parameters of the non-linear railpad model were determined by
use of data from static measurements, while the parameters of the linear railpad models
were determined by use of frequency-dependent data. The non-linear model gave a slightly
different form of the deflection curve than that obtained by the linear railpad models.
Increasing the load when the non-linear railpad model was used did not give a
correspondingly larger increase of the deflection, as expected. The non-linearity will be
more important when a better vehicle model is included and when the possibility of loss
of contact between the wheel and the rail is considered [5], because then the load on the
track will vary considerably. However, the establishment of a reliable non-linear railpad
model would require more measurements on actual railpads.
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